
University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 1

Regular Expressions

• Background
• Sets of strings

• Stating a regular expression (simple)
• Python re module (simple)
• A bit of theory
• Stating a regular expression (more complex)
• Python re module (more complex)

• Using regexes for control flow

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 2

String patterns
• We all use searches where we provide strings or substrings

to some module or mechanism
– Google search terms
– Filename completion
– Command-line wildcards
– Browser URL completion
– Python string routines find(), index(), etc.

• Quite often these searches are simply expressed as a
particular pattern
– An individual word
– Several words where some are strictly required while some are

not
– The start or end of particular words -- or perhaps just the

string appearing within a larger string
• This works well if strings follow the format we expect…

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 3

String patterns
• Sometimes, however, we want to express a more complex pattern

– The set of all files ending with either ".c" or ".h"
– The set of all files starting with "ical".
– The set of all strings in which "FREQ" appears as a string (but not

"FREQUENCY" or "INFREQUENT", but "fReQ" is fine)
– The set of all strings containing dates in MM/DD/YYYY format.

• Such a variety of patterns used to require language-specific
operations
– SNOBOL
– Pascal

• More troubling was that most non-trivial patterns required several
lines of code to express (i.e., a series of "if-then-else" statements)
– This is a problem as the resulting code can obscure the patterns for

which we are searching
– Even worse, changing the pattern is tedious and error-prone as it

means changing the structure of already written code.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 4

C code to check for DD/MM/YYYY format
int is_date_format(char *check) {

return 0;
}

if (!isdigit(check[0]) || !isdigit(check[1])) {
return 0;

}

if (!isdigit(check[3]) || !isdigit(check[4])) {
return 0;

}

for (i = 6; i < 10; i++) {
if (!isdigit(check[i])) {

return 0;
}

}

if (check[2] != '/' || check[5] != '/') {
return 0;

}

/* Still haven't even figured out of the DD makes sense, let alone
* the MM!!!!
*/

return 1;
}

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 5

Regular expressions
• Needed: a language-independent approach to expressing such

patterns
• Solution: a regular expression

– Sometimes called a regex or regexp
• They are written in a formal language and have the property that

we can build very fast recognizers for them
• Part of a hierarchy of languages

– Type 0: unrestricted grammars
– Type 1: context-sensitive grammars
– Type 2: context-free grammars
– Type 3: regular grammars

• Type 2 and 3 grammars are used in Computer Science
– Type 2 is used in parsers for computer languages (i.e., compilers)
– Type 3 is used in regular expressions and lexical analyzers for

compilers

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 6

grep
• We already can use regular expressions in Unix at the

command line
• The grep utility accepts two sets of arguments

– grep: global regular expression print
– argument 1: A regular expression
– argument 2: A set of files through which grep will try to

find strings matching the regex
• The syntax for a regex is grep is somewhat similar to

what we will use in Python
– grep is a very old tool (i.e., from 1973)
– superseded somewhat by fgrep (fixed-string grep)
– a variety of extensions, optimizations, etc. exist

• Example: search for variants on "apple"

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 7

grep
unix$ grep apple fruitstuff.txt
apple
apples
apple-
apple-fruit
My best friend is an apple.
pineapple
Crabapple
fruit-appleapple

apples
Apple Pie
APPLE SUX!
apple-
apple-fruit
"Apple is the greatest!"
My best friend is an apple.
pineapple
Crabapple
fruit-apple

contents of fruitstuff.txt

unix$ grep ^a.ple fruitstuff.txt
apple
apples
apple-
apple-fruit

unix$ grep -w apple fruitstuff.txt
apple
apple-
apple-fruit
My best friend is an apple.
fruit-apple

unix$ grep apple$ fruitstuff.txt
apple
pineapple
Crabapple
fruit-apple

unix$ grep -i ^apple fruitstuff.txt
apple
apples
Apple Pie
APPLE SUX!
apple-
apple-fruit

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 8

More general regular expressions
• Our grep examples were relatively simple
• Sometimes we want to denote more complex sets of strings

– strings where the beginning and end match a pattern, while
everything in-between can vary

– all possible spellings of a particular name
– match non-printable characters
– catch possible misspellings of a particular word
– match Unicode code points

• And we may want even more:
– when matching patterns to strings, extract the actual match

itself
– look for strings where the matched pattern repeats exactly

later in the same string
– extract multiple matches from one string

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 9

Metasymbols
• Fully-fledged regexes

initially look intimidating
because of the metasymbols

• However, all that is required
to understand them is
patience

• Regexes never loop…
• … nor are they ever recursive
• Understanding them means

reading from left-to-right!
• However, first some

metasymbols

symbol/example meaning

. match any char except \n

a* zero or more reps of 'a'

a+ one or more reps of 'a'

a? zero or one rep of 'a'

a{5} exactly 5 reps of 'a'

a{3,7} 3 to 7 reps of 'a'

[abc] any one character in the
set {a, b, c}

[^abc] any one character not in
the set of {a, b, c}

a|b match 'a' or 'b'

(...) group a component of
symbols in the regex

\ escape any metasymbol
(caution!)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 10

Special pattern elements
symbol meaning

\d Any decimal digit character

\w Any alphanumeric character

\s Any whitespace character (\t\n\r\f\v)

\b Empty string at a word boundary

^ match 0 characters at the start of the string

$ match 0 characters at the end of the string

\D match any non-digit character (opposite of \d)

\W match any non-alphanumeric character (opposite of \w)

\S match any non-whitespace character

\B empty string (i.e., 0 characters) not at a word boundary

\number matches text of group number

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 11

Python regular expressions
• The re module

– Introduced into Python in version 1.5
– (Don't use the regex module which is an older release of a

regular-expression library)
– Use to be slower than regex, but is now as fast if not faster
– Supports named groups
– Supports non-greedy matches (we'll cover this later)

• Note:
– Regular expression syntax is generally the same from language

to language and library to library (e.g., Python, Perl, Ruby)
– However, sometimes there are differences in the way some

features are expressed (e.g., groups, escaped characters)
– Whenever you move to different implementations, always have

the library reference nearby.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 12

Simple example

>>> text1 = 'Hello spam...World'
>>> text2 = 'Hello spam...other'

>>> import re
>>> matchobj = re.match('Hello.*World', text2)
>>> print (matchobj)
None

>>> if re.match('Hello.*World', text2):
... print ("It's the end of the World")
... else:
... print ("The end of the world is nowhere in sight")
...
The end of the world is nowhere in sight
>>

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 13

Previous example
• The regular-expression match was applied to string text2

– Regex specified a string with "Hello" followed by 0 or many characters
followed by "World"

– The match did not succeed, therefore the value None was returned
– In Python, None may be used as part of a conditional expression (i.e.,

has similar meaning to "False".
• Even though the name of the RE method was match(), we did not

use any syntax to extract out some result of the match
– Which is just as well as there was no match.
– However, if we wanted to extract out the some result, we must use

parentheses.
• Let's look at the example again, but this time include the other

string in our use of match
– Note that in the following example the "import re" is left out (i.e., we

assume it was executed earlier in the session)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 14

Simple example

>>> text1 = 'Hello spam...World'
>>> text2 = 'Hello spam...other'

>>> matchobj = re.match('Hello(.*)World', text1)
>>> print (matchobj)
<_sre.SRE_Match object at 0x10043b8a0>

>>> hello_list = [text1, text2]
>>> for t in hello_list:
... matchobj = re.match('Hello(.*)World', t)
... if matchobj:
... print (t, " --> match --> ", matchobj.group(1))
... else:
... print (t, " --> no matches")
...
Hello spam...World --> match --> spam...
Hello spam...other --> no matches

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 15

Previous example
• The match did succeed when applied to text1

– The result is a match object
– This has an interface which is used to extract matched

substrings
– In this case, we extracted the substring matching the pattern in

the parentheses
• The parameter passed to group corresponds to the order of

left parenthesis
– A regular expression can have several such groups given the

use of parentheses
– Groups can even be nested (i.e., nested parentheses)…
– … but they can never overlap.
– Programmers make extensive use of groups in regular

expressions
– It helps make code more robust and less dependent on an

exact format.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 16

Speed concerns
• So far we have specified the regular expression

for every use of an re operation
• For occasional regex matching this is fine
• However, each time the match is performed the

Python interpreter must re-interpret the regex
– This means the regex must be re-parsed and the

state machine re-constructed.
– If we want to search many strings using the same

regex, it makes sense to eliminate the overhead of
repeating this work.

– To eliminate the repeated work, we must compile
the pattern

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 17

Speed concerns
• When using this style of regex matching, we

work with a pattern object
– Resulting code is much, much faster
– Note, however, the compilation itself takes up

some cycles.
• For now, just be aware there exist the two

styles of invoking re operations
– Onedirectly specifying the regex in call to

match(), search(), etc.
– The other using a pattern object returned from

re.compile() for which we call match(), search(),
etc.).

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 18

Regex as a state machine

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 19

Compiled pattern

>>> pattobj = re.compile('Hello(.*)World')
>>> matchobj = pattobj.match(text1)
>>> print (matchobj)
<_sre.SRE_Match object at 0x10043b8a0>

>>> hello_list = [text1, text2]
>>> for t in hello_list:
... matchobj = pattobj.match(t)
... if matchobj:
... print (t, " --> match --> ", matchobj.group(1))
... else:
... print (t, " --> no matches")
...
Hello spam...World --> match --> spam...
Hello spam...other --> no matches

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 20

Lots in the re module
• Python's re module has methods for:

– matching (i.e., finding a match that must start at the beginning
of the string)

– searching (i.e., finding a match that may occur anywhere in the
string)

– substituting
– precompiling
– splitting
– iterating through matches

• Match objects also have several methods
– We've already seen group()
– There are also groups(), groupdict()

• Let us look at a few examples, this time with a few more
metasymbols included

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 21

More complex pattern

>>> datetime1 = "20180211T110000"
>>> datetime2 = "20171225T000000Z"
>>> datetime3 = "11/06/2016"
>>> datetime4 = "21/4/14"

>>> matchobj = re.match("(\d{4})(\d{2})(\d{2})T.*", datetime1)
>>> if matchobj:
... (year, month, day) = matchobj.groups()
... print (year, month, day)
... else:
... print ("Error")
...
2018 02 11

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 22

More complex pattern

>>> dates = ["20180230T110000", "20170615T000000Z", "11/11/2017",
"21/4/18""]

>>> pattobj = re.compile("(\d\d?)/(\d\d?)/(\d\d(\d\d)?)")

>>> for d in dates:
... matchobj = pattobj.match(d)
... if matchobj:
... (day, month, year, _) = matchobj.groups()
... print ("%4d%02d%02d" % (int(year), int(month), int(day)))
... else:
... print (d, "doesn't match")
...
20180230T110000 doesn't match
20170615T000000Z doesn't match
20171111
180421

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 23

Another pattern
>>> line1 = ".LM +5"
>>> line2 = ".LM filled"
>>> line3 = ".LM 10x"
>>> line4 = ".LM 22"
>>> lines = [line1, line2, line3, line4]

>>> for line in lines:
... matchobj = re.match("\.LM (\d+)\s*$", line)
... if matchobj:
... values = matchobj.groups()
... print (line, ": matches with value ", values[0])
... else:
... print (line, ": DOESN'T match")

.LM +5 : DOESN'T match

.LM filled : DOESN'T match

.LM 10x : DOESN'T match

.LM 22 : matches with value 22

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 24

Notes from previous example
• Although grouping may be used to control the

regular-expression match, not all results need to be
extracted
– Notice that sometimes part of the extracted matches is

ignored
– Always be aware the extracted matches are indexed by

opening left parenthesis (i.e., not by your intent as a
programmer to extract out particular parts of the match)

• There is often more than one way to phrase the
same regular expression
– Note that "\d\d" is the same as "\d{2}"
– Which one is better? Depends perhaps on style of

programmer, amount of change expected with code,
etc. etc.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 25

Variety
• Sometimes our needs vary when working with

regexes
– Sets of strings may be best expressed by alternative

strings
– Regexes may need to be carefully crafted sets of

characters
– Matches may sometimes be required on word

boundaries
– Sometimes all we want is the starting location of the

match.
• Python string rules can sometimes interfere with

regular expressions
– The problem is with backslashes
– Sometimes you must double-up on them (e.g., "\\")

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 26

Using search()
>>> pattern, string = "A.C.", "xxABCDxx"
>>> matchobj = re.search(pattern, string)
>>> if matchobj:
... print (matchobj.start())
...
2
>>> pattobj = re.compile("A.*C.*")
>>> matchobj = pattobj.search("xxABCDxx")
>>> if matchobj:
... print (matchobj.start())
...
2

>>> print (re.search(" *A.C[DE][D-F][^G-ZE]G\t+ ?", "..ABCDEFG\t..").start())
2
>>> print (re.search("A|XB|YC|ZD", "..AYCD..").start())
2
>>> print (re.search("\bABCD", "..ABCD").start())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute 'start'
>>> print (re.search(r"\bABCD", "..ABCD").start())
2
>>> print (re.search(r"ABCD\b", "..ABCD").start())
2

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 27

Problem Solving
• We have seen a variety of metasymbols (sometimes referred to as

metacharacters)
– Most of them match one or more characters
– Some, however, are meant to catch a particular position (i.e., they

catch zero characters!)
• The simplest positional symbols are ^ and $

– ^: match beginning of string
– $: match end of string
– Note that re.match("<pattern>", string) is exactly the same as

re.search("^<pattern>", string) if string is not multiline
• Another positional symbol is \b

– Matches a word boundary (i.e., zero characters)
– That is, it matches the position in between characters (one of which is

a word character, the other a non-word character)
– Word characters: [a-zA-Z0-9_]

• Problem 1: Match the word "Chris" in a string, but not
"Christmas", "Christine", etc.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 28

Problem Solving

#!/usr/bin/python3

import re

lines = ['''I said to Chris, "Hey, watch out!"''',
'''I'll be home for Christmas!''',
'Christine Faulkner',
'Chris Flynn',
'Evert, Chris']

for li in lines:
if (re.search(r'\bChris\b', li)):

print (li)

$./prob01.py
I said to Chris, "Hey, watch out!"
Chris Flynn
Evert, Chris

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 29

Problem Solving
• Words need not be textual

– They can also be numerical
– Key point is that non-word characters are neither numbers nor

letters (nor the underscore)
• Sometimes we are interested in the shape of number

sequences
– Course numbers
– Room numbers
– Serial numbers, product codes, etc.

• Problem 2: Extract the last four digits from a North
American phone number
– May be of the form "250-472-5000"…
– or "250 472 5000"…
– or "472-5000"
– or perhaps "250.472.5000" or "+1 250 472 5000"

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 30

Problem Solving
#!/usr/bin/python3

import re

lines = ["250-472-5000", "472-5000", "250.472.5000", \
"+1 250 472 5000", "011 49 9602 4241", "2504725000", \
"mom's number", "12345 678 90"]

for l in lines:
matchobj = re.search(r"(\b\d{3}\b[- \.])?\b\d{3}\b[- \.](\b\d{4}\b)", l)
if matchobj:

print (l, "-->", matchobj.group(2))

$./prob02.py
250-472-5000 --> 5000
472-5000 --> 5000
250.472.5000 --> 5000
+1 250 472 5000 --> 5000

matchobj = re.search(r"\b(?:\d{3})?\d{3}(\d{4})\b", l)
if matchobj:

print (l, "-->", matchobj.group(1))

2504725000 --> 5000

Notice the "?:" used in the
second search. It makes a set of
parentheses "non-matching"
but still useful to structure the
regex. That is why the group
number is still 1 even though
the match we want is denoted
by the second left-parenthesis

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 31

Problem Solving
• We can also use regexes to verify that the format

provided as input matches what we expect
– Example: Input string is in "DD/MM/YYYY" or

"MM/DD/YYYY" format
– Example: String provided is a URI (i.e., proper sets of

characters)
• Problem 3: Obtain a temperature (assumed to

be Celsius) and return the number in Fahrenheit
– Number is to be an integer
– There must be only one number in the string
– No other characters (such as "C") should be at the

end
– Fahrenheit = (Celsius * 9 / 5) + 32

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 32

Input validation

#!/usr/bin/python3

import re

celsius = input("Enter a temperature in Celsius: ")
celsius = celsius.rstrip("\n")

matchobj = re.search(r"^[0-9]+$", celsius) # same as re.match("\d+",...)
if matchobj:

celsius = int(celsius)
fahrenheit = (celsius * 9 / 5) + 32
print ("%d C is %d F" % (celsius, fahrenheit))

else:
print ("Expecting a number, so I don't understand", celsius)

$./prob03.py
Enter a temperature in Celsius: 30
30 C is 86 F

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 33

Problem Solving

• However, we should do a bit more
– The problem statement is perhaps a bit too

restrictive.
– Negative temperatures cannot be given as

values.
– Decimal temperatures also cannot be provided

• The regular expression should accept these
– And the other code changed to suit (i.e., use

"float()" instead of "int()")

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 34

Input validation

#!/usr/bin/python3

import re

celsius = input("Enter a temperature: ")
celsius.rstrip("\n")

matchobj = re.search(r"^([-+]?[0-9]+(\.[0-9]*)?)$", celsius)
if matchobj:

celsius, _ = matchobj.groups()
celsius = float(celsius)

fahrenheit = (celsius * 9 / 5) + 32
print ("%.2f C is %.2f F" % (celsius, fahrenheit))

else:
print ("Expecting a number, so I don't understand", celsius)

./prob03.py
Enter a temperature in Celsius: 12.2
12.20 C is 53.96 F

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 35

Problem Solving
• Our little script could be even more general

– Rather than just convert from celsius to fahrenheit, it
could convert the other direction

– The starting value can be indicated by a "C" or "F" (or
"c" or "f")

• Problem 4: Obtain a temperature. If it is in
celsius, return the number in fahrenheit; if in
fahrenheit, return the number in celsius.
– Number can be an integer or a float, positive or

negative
– There must be only one number in the string
– Character "C" or "F" implies what we are converting

from and to.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 36

Input validation plus more
#!/usr/bin/python3

import re

input = input("Enter a temperature: ")
input.rstrip("\n")

matchobj = re.search(r"^([-+]?[0-9]+(\.[0-9]*)?)\s*([CF])$", input, re.IGNORECASE)
if matchobj:

input_num, _, type = matchobj.groups()
input_num = float(input_num)

if type == "C" or type == "c":
celsius = input_num
fahrenheit = (celsius * 9 / 5) + 32

else:
fahrenheit = input_num
celsius = (fahrenheit - 32) * 5 / 9

print ("%.2f C is %.2f F\n" % (celsius, fahrenheit))
else:

print ('Expecting a number followed by "C" or "F",')
print ('so I cannot interpret the meaning of', input)

Notice how we indicate that
case is to be ignored. The "re"
module contains are large
number of these kinds of
options.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 37

Problem Solving
• Our solution to Problem 4 still has some flaws

– Cannot enter a number less than one without a leading
zero.

– No leading spaces are permitted (i.e., we have general
whitespace issues)

– We are using [0-9] instead of \d
– etc. etc.

• There are many ways to "skin" a regular expression
– The lesson so far, however, is that coming up with a full

regular expression for these kinds of matches can be an
iterative process.

– Must also be aware of how a language deals with
metasymbols within strings (e.g., Perl and Ruby are a bit
different than Python)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 38

Problem Solving
• A large set of programming problems with strings can be solved

with substitutions
– The pattern describes what we want to replace
– Another string describes how we want it changed.

• There are a variety of substitution routines in the Python re
module
– We are interested in the one named re.sub()
– It takes at least three parameters: search pattern, replacement

pattern, and target string
• Problem 5: Cleaning up stock prices

– Numbers arrive as strings from some stock-price service
– Sometimes they have lots of trailing zeros
– We want to take the first two digits after the decimal point, and take

the third digit only if is not zero; all other digits are removed
– Example: "3.14150002" --> "3.141"
– Example: "51.5000" --> "51.50"

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 39

First, a warm up

#!/usr/bin/python3

import re

line1 = "Michael Zastre"
line2 = "Michael Marcus Joseph Zastre"

print ("Before:", line1)
line1 = re.sub("Michael", "Mike", line1)
print ("After:", line1)

print

print ("Before:", line2)
line2 = re.sub("Marcus", "M.", line2)
line2 = re.sub("Joseph", "J.", line2)
print ("After:", line2)

$./warmup.py
Before: Michael Zastre
After: Mike Zastre

Before: Michael Marcus Joseph Zastre
After: Michael M. J. Zastre

Substitutions are global (i.e., all
instances for a particular string
match get substituted).

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 40

Problem Solving
• Problem 5: Cleaning up stock prices

– Numbers arrive strings from some stock-price service
– Sometimes they have lots of trailing zeros
– We want to take the first two digits after the decimal point, and take

the third digit only if is not zero; all other digits are removed
– Example: "3.14150002" --> "3.141"
– Example: "51.5000" --> "51.50"

• Let's think this through:
– We are not interested in changing digits to the left of the decimal

point.
– We want at least two digits to the right of the decimal point.
– If the third digit to the right of the decimal point is not a zero, then we

want to keep it…
– … otherwise we don't want it.

• We'll throw into the mix one other feature
– Match references (i.e., \<num>)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 41

Substitutions

#!/usr/bin/python3

import re

prices =["3.141500002", "12.125", "51.500"]

for p in prices:
print ("Before --> ", p)
p = re.sub(r"(\.\d\d[1-9]?)\d*", r"\1", p)
print ("After --> ", p)
print ()

$./prob05.py
Before --> 3.141500002
After --> 3.141

Before --> 12.125
After --> 12.125

Before --> 51.500
After --> 51.50

In the second parameter to
re.sub(), all backslash escapes
are processed (i.e. Python string
rules), so we need to use r" " to
denote the string with the
backreference.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 42

Problem Solving
• Python supports shortstrings and longstrings

– All of our strings so far have been of the short form
– Docstrings are longstrings (strings delimited with """)
– We can use longstrings to format a textual

document
• Problem 6: Nigerian Spam Form Letters

– (Please don't do this at home.)
– We have a text block that we want to customize
– There are certain spots in the text block where we

have "tags" that must be replaced with specific
strings

– We would like to do this with regular expressions

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 43

Example: Form letter
=LOCATION=

Attention: =TITLE=

Having consulted with my colleagues and based on the
information gathered from the Nigerian Chambers of Commerce
and industry, I have the privilege to request for your
assistance to transfer the sum of =AMOUNT=
(=AMOUNTSPELLED=) into your accounts.

We are now ready to transfer =AMOUNT= and that is where
you, =SUCKER=, come in.

place = 'Lagos, Nigeria'
title = 'The President/CEO'
cash = '$47,500,000.00'
cashtext = 'forty-seven million, five hundred thousand dollars'
important_person = 'Mr. Justin Trudeau'

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 44

Form letter
• To fill out the form letter, we could have the

following subtitutions:
– contents of "place" replace all spots with "=LOCATION="
– contents of "title" replace all spots with "=TITLE="
– contents of "cash" replace all spots with "=AMOUNT="
– contents of "cashtext" replace all spots with

"=AMOUNTSPELLED="
– contents of "important_person" replace all spots with

"=SUCKER="
• This can be implemented via a straight-forward

sequence of re.sub() operations
– By default, the operation performs a global replacement

on the target string
– (However, we can use re.subn() if we want to limit this.)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 45

Form letter

#!/usr/bin/python3

import re

letter = """
=LOCATION=

Attention: =TITLE=

Having consulted with my colleagues and based on the
information gathered from the Nigerian Chambers of Commerce
and industry, I have the privilege to request for your
assistance to transfer the sum of =AMOUNT=
(=AMOUNTSPELLED=) into your accounts.

We are now ready to transfer =AMOUNT= and that is where
you, =SUCKER=, come in."""

continued on next slide

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 46

Form letter

continued from previous slide

place = 'Lagos, Nigeria'
title = 'The President/CEO'
cash = '$47,500,000.00'
cashtext = 'forty-seven million, five hundred thousand dollars'
important_person = 'Mr. Justin Trudeau'

letter = re.sub(r"=LOCATION=", place, letter)
letter = re.sub(r"=TITLE=", title, letter)
letter = re.sub(r"=AMOUNT=", cash, letter)
letter = re.sub(r"=AMOUNTSPELLED=", cashtext, letter)
letter = re.sub(r"=SUCKER=", important_person, letter)

print (letter)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 47

Example: Form letter

Lagos, Nigeria

Attention: The President/CEO

Having consulted with my colleagues and based on the
information gathered from the Nigerian Chambers of Commerce
and industry, I have the privilege to request for your
assistance to transfer the sum of $47,500,000.00
(forty-seven million, five hundred thousand dollars) into your accounts.

We are now ready to transfer $47,500,000.00 and that is where
you, Mr. Justin Trudeau, come in.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 48

Problem Solving
• More useful problem-solving: formatting mail

replies
– In the "old days" e-mail was via a Unix command

called mail
– You could pipe stuff into and out of mail.

• Problem 7: Transforming an e-mail into the
start of a reply
– Extract fields from the original e-mail's header
– Use these to construct the reply's header
– Take the body of the e-mail and indent it with a

special character sequence.
• Idea is that this text could then be the starting

point of a reply.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 49

Example: E-mail replies

From elvis Thu Apr 31 9:25 2017
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: nigelh@cmpt.uvic.ca (R. Nigel Horspool)
From: elvis@tabloid.org (The King)
Date: Thu, Apr 31 2017 9:25
Message-Id: <2013022939939.KA8CMY@tabloid.org>
Subject: Be seein' ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda's Psychic Orb [version 3.7 PL92]

Sorry I haven't been around lately. A few years back I checked
into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
The Duke says "hi".

Elvis
Original e-mail from the spirit
world.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 50

Example: E-mail replies

To: elvis@tabloid.org (The King)
From: nigelh@cmpt.uvic.ca (R. Nigel Horspool)
Subject: Be seein' ya around

On Thu, Apr 31 2017 9:25 The King wrote:
|> Sorry I haven't been around lately. A few years back I checked
|> into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
|> The Duke says "hi".
|> Elvis

What we want to produce

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 51

E-mail replies
• The original e-mail structure was:

1. header lines
2. a single blank line
3. body lines

• The reply's header needs:
– The original sender (from the "To:" field)
– The original recipient (from the "From:" field)
– The original subject (from the "Subject:" field)

• The reply's body needs:
– The original text
– The date of the original e-mail (from the "Date:" field)

• We can search the header for the required fields…
– … and use the blank line to indicate when we switch to processing the

body.
– This suggests a loop structure

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 52

Example: overall code structure

#!/usr/bin/python3

import sys
import re

def main():
for line in sys.stdin:

process the header in this "for" body be extracting required
fields

if current line is blank, then break out of the loop

print header stuff

for line in sys.stdin:

at this point we are reading in the body line by line
so make sure we indent with the special string sequence

that's all

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 53

Example: E-mail replies

From elvis Thu Apr 31 9:25 2017
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: nigelh@cmpt.uvic.ca (R. Nigel Horspool)
From: elvis@tabloid.org (The King)
Date: Thu, Apr 31 2017 9:25
Message-Id: <2015063139939.KA8CMY@tabloid.org>
Subject: Be seein' ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda's Psychic Orb [version 3.7 PL92]

Sorry I haven't been around lately. A few years back I checked
into that ole heartbreak hotel in the sky, ifyaknowwhatImean.
The Duke says "hi".

Elvis

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 54

E-mail replies
• Some of the required matches are pretty straight

forward:
– Matching the Subject
– Matching the Date

• The "From" data is a bit trickier
– There are two "From" fields in the header.
– We want the data in the field formed like "From:" (i.e.,

with a colon)
– The field contains both an e-mail address and a person's

name
– We want both.
– Regex must match parentheses (although parentheses

are used to group matched characters): must escape the
right parentheses

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 55

E-mail replies

From elvis Thu Apr 31 9:25 2017
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: nigelh@cmpt.uvic.ca (R. Nigel Horspool)
From: elvis@tabloid.org (The King)
Date: Thu, Apr 31 2017 9:25
Message-Id: <2015063139939.KA8CMY@tabloid.org>
Subject: Be seein' ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda's Psychic Orb [version 3.7 PL92]

for line in sys.stdin:
if (re.search("^\s*$", line)):

break

matchobj = re.search("^Subject: (.*)$", line)
if (matchobj):

subject = matchobj.group(1)
continue

matchobj = re.search("^Date: (.*)$", line)
if (matchobj):

date = matchobj.group(1)
continue

matchobj = re.search("^Reply-To: (.*)$", line)
if (matchobj):

reply_address = matchobj.group(1)
continue

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 56

E-mail replies
From elvis Thu Apr 31 9:25 2017
Received: from elvis@localhost by tabloid.org (8.11.3) id KA8CMY
Received: from tabloid.org by gateway.net (8.12.5/2) id N8XBK
To: nigelh@cmpt.uvic.ca (R. Nigel Horspool)
From: elvis@tabloid.org (The King)
Date: Thu, Apr 31 2016 9:25
Message-Id: <2015063139939.KA8CMY@tabloid.org>
Subject: Be seein' ya around
Reply-To: elvis@hh.tabloid.org
X-Mailer: Madam Zelda's Psychic Orb [version 3.7 PL92]

for continued

matchobj = re.search(r"^From: (\S+) \(([^()]*)\)", line)
if (matchobj):

reply_address, from_name = matchobj.group(1), matchobj.group(2)
continue

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 57

E-mail replies

print ("To: %s (%s)" % (reply_address, from_name))
print ("From: nigelh@cs.uvic.ca (R. Nigel Horspool)")
print ("Subject: Re: %s" % (subject))
print ()

print ("On %s %s wrote:" % (date, from_name))
for line in sys.stdin:

line = line.rstrip('\n')
line = re.sub("^", "|> ", line)
print (line)

if __name__ == "__main__":
main()

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 58

Problem Solving
• Our last problem is a curious one
• Problem 8: Add commas to a large number to improve

readability
– Example: cdn_population = 33894000
– Yet we want this to appear in output with commas

("33,894,000")
• How do we do this mentally?

– We group by threes…
– … by starting from the right and heading left
– If a group of three or fewer numbers remains on the leftmost

end, that's okay
• But how can a regex help us here?

– Don't they go from left-to-right?
– The key is to use some regex features referred together as

lookaround

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 59

Leading up to our answer…
• Let's start instead with a simpler problem
• Given a string:

– "This is Mikes bicycle"

• Change it so that the possessive is properly
punctuated
– "This is Mike's bicycle"

• There are several ways to to this already
– We use re.sub()
– The pattern and replacement can vary given the

style of regex.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 60

Giving Mike a bicycle

#!/usr/bin/python3

import re

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub("Mikes", "Mike's", s)
print ("After -->", s, "\n")

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"\bMikes\b", "Mike's", s)
print ("After -->", s, "\n")

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"\b(Mike)(s)\b", r"\1'\2", s)
print ("After -->", s, "\n")

Before --> This is Mikes bicycle
After --> This is Mike's bicycle

Before --> This is Mikes bicycle
After --> This is Mike's bicycle

Before --> This is Mikes bicycle
After --> This is Mike's bicycle

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 61

Lookaround
• Recall that we already have some operators that match positions

– ^
– $
– \b

• That is, they do not match individual characters but rather
transitions amongst characters

• The idea behind lookahead (?=) and lookbehind (?<=) is to
generalize the notion of position
– Lookaround operators do not consume text of the string
– However, the regex machinery still goes through the motions
– The regex "Chris" matches the string "Christopher Jones" as shown by

the underline
– The regex "?=Chris" matches the position just before the "C" in

"Christopher Jones" and just after any character preceding the string
(i.e., in-between characters)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 62

Lookaround
• Let's apply this to the statement about the bicycle
• We can read the pattern as follows:

– The regex "matches" the provided string (i.e., "s") if "Mike" is in
the string…

– … and if the start of "Mike" is at a word boundary
– and if "s" follows "Mike"
– but the actual match used for substitution starts at the word

boundary and goes up to but does not include the letter "s".

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"\bMike(?=s\b)", "Mike'", s)
print ("After -->", s)
print ()

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 63

Lookaround
• We can be more precise (and require less of a replacement

string) by using both lookahead and lookbehind
• We can read the pattern as follows:

– Find a spot where we can look behind to "Mike"…
– … and look ahead to "s"
– and at that position (i.e., width of zero!) "substitute" with a

single quote.

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"(?<=\bMike)(?=s\b)", "'", s)
print ("After -->", s)
print ()

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 64

Surprise, surprise
• Since we're looking at positions, and since we don't

consume characters…
• … we can exchange the order of lookahead and

lookbehind yet get the same result!
• To repeat: we're matching a position (i.e., a zero

width char).
– The mind boggles, but this does work.

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"(?<=\bMike)(?=s\b)", "'", s)
print ("After -->", s)
print ()

s = "This is Mikes bicycle"
print ("Before -->", s)
s = re.sub(r"(?=s\b)(?<=\bMike)", "'", s)
print ("After -->", s)
print ()

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 65

"Positive lookbehind assertion"

• In essence we are making statements
regarding what must be true before
matched text

• Example: Look for a word following a
hyphen

n = "What a hare-brained idea!"
matchobj = re.search(r"(?<=(-))\w+\b", n)
if matchobj:

print (matchobj.group(0))
else:

print ("No match")

$./prob10.py
brained

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 66

Problem Solving
• Back to the problem…
• Problem 8: Add commas to a large number to

improve readability
– Example: cdn_population = 33894000
– Yet we want this to appear in output with commas

("33,894,000")
• We want to insert commas at specific positions

– These correspond to locations having digits on the right
in exact sets of three.

– This we can do with a lookahead
– For the case of "at least some digits on the left", we can

use lookbehind
– We can represent three digits as either "\d\d\d\" or "\d{3}"
– What we'll use as the replacement string is simply ","

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 67

Adding commas

#!/usr/bin/python3

import re

n = "33894000"
print ("Before -->", n)
n = re.sub(r"(?<=\d)(?=(\d{3})+$)", ",", n)
print ("After -->", n)

$./prob08.py
Before --> 33894000
After --> 33,894,000

Don't forget that the
"substitute" commands does a
global search and replace (i.e.,
all places where this pattern
matches will have the
command inserted).

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 68

Greedy vs. non-greedy

#!/usr/bin/python3

import re

n = "<p>This is an HTML paragraph</p>"
print (n)

matchobj = re.search(r"<.*>", n)
print ("Match produces --> ", matchobj.group(0))

matchobj = re.search(r"<.*?>", n) # non-greedy modifier to *
print ("Match produces --> ", matchobj.group(0))

$./prob09.py
<p>This is an HTML paragraph</p>
('Match produces --> ', '<p>This is an HTML paragraph</p>')
('Match produces --> ', '<p>')

"?" can be used to modify "?",
"+" and "*" to be non-greedy
(i.e., consume as little as
possible of string to perform
match)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 69

Regexes in C
• There is a regular-expression library for the

C programming language...
• ... and it supports POSIX regular expressions

– These are substantially similar to what we have
seen so far.

– The big change, however, is in the way
metasymbols are specified.

– Example: "\d" becomes "[[:digit:]]", "\w" becomes
"[[:alnum:]]", etc.

• They are substantially harder to use at first,
yet do not do anything surprising.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 70

Regexes in C
• Must include: <regex.h>

– As regular expressions involve strings, then should
also include <string.h>

• Ingredients (i.e., to use in a program):
– regex_t variable: the regular expression itself
– regmatch_t variable: to indicate where match

patterns begin and end in the searched string
– Code that calls regcomp: regexes must be compiled

in C
– Code that calls regfree: releases memory resources

associated with compiled regular expression
– Code that extracts the matches: working with

strings

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 71

C regex: example
int status;
regex_t re;
regmatch_t match[4];

char *pattern = "([[:digit:]]+)";
char *search_string = "abc def 123 hij";

if (regcomp(&re, pattern, REG_EXTENDED) != 0) {
return 0;

}

status = regexec(&re, search_string, 2, match, 0);
if (status != 0) {

fprintf(stderr, "No match.\n");
return 0;

}

char match_text[100];
strncpy(match_text, search_string+match[1].rm_so,

match[1].rm_eo - match[1].rm_so); /* rm_eo is already plus one */
match_text[match[1].rm_eo - match[1].rm_so + 1] = '\0';

printf("Match was '%s'\n", match_text);
regfree(&re);

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 72

regcomp regexec
• recomp takes three parameters:

1. Address to a regex_t variable
2. Actual pattern to search for (in POSIX form)
3. Flags

• regexec takes five parameters:
1. Address to a regex_t variable (which has been already

initialized by recomp)
2. The string to be searched
3. The maximum number of groupings in the pattern...
4. ... and the match array itself which must have a length

at least as long as what parameter 3 indicates
5. flags (i.e., "no flags" == NULL)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 73

The match variable
• Declared as an array

– Size is normally one larger than the number of left
parentheses

– Be careful the 0th element is the string that was involved
in the match!

• Each element denotes the start and ending position
of the match
– match[i].rm_so: Index position in the original string at

which the ith match starts
– match[i].rm_eo: Index position plus one in the searched

string at which the ith match ends
• Usual practice: Copy the characters in the match

from the search string to some temporary string...
– ... and then use that temporary string

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 74

Complete aside: SQL injection attacks

• Problem:
– Untrusted text from an application (i.e., web

page) may be inserted without modification into
a query

– If carefully crafted, untrusted text could wreak
havoc with security of our site.

• Although we may want to take extra steps...
– ... using the "execute()" parameter passing

mechanism will prevent arbitrary SQL from
appearing in SQL statements

• Typical problem example: e-mail address

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 75

Problematic code...
• Note query is innocent on the face of it

– Simple select
– Fetches data from a table
– where clause specifies row(s) when the contact

attribute equals the value stored in email_address
– email_address is a reference to a Python string
– For our examples, we don't necessarily know how the

string's value was set.

75

email_address = "i.love.to.be.me@donaldtrump.gov"

Assuming we're using something like psychopg2 driver in order to connect
a Python script to some PostgreSQL server instance. Variable cursor was
assigned a value earlier in the script...

cursor.execute("""
select somefield1, somefield2, somefield3
from really_important_table
where contact = '%s'""" % email_address)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 76

Attack (version 1)
• Changing where clause to a trivially

true

• Will cause all rows in the table to be
returned

76

email_address = "anything' or 'x'='x"

cursor.execute("""
select somefield1, somefield2, somefield3
from really_important_table
where contact = '%s'""" % email_address)

select somefield1, somefield2, somefield3
from really_important_table
where contact = 'anything' or 'x'='x'

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 77

Attack (version 2)
• Trying to discover the names of attributes in tables
• In essence, guessing in a way that the query returns

information that tells if the guess was right
• (Incorrect guess == syntax error)

77

email_address = "x' and email is NULL --"

cursor.execute("""
select somefield1, somefield2, somefield3
from really_important_table
where contact = '%s'""" % email_address)

select somefield1, somefield2, somefield3
from really_important_table
where contact = 'x' and email is NULL --'

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 78

Attack (version 3)

• Damage the database
– Assumes the attacker knows the names of

tables in the database
– Drop table, view, index

78

email_address = "x'; drop table members --"

cursor.execute("""
select somefield1, somefield2, somefield3
from really_important_table
where contact = '%s'""" % email_address)

select somefield1, somefield2, somefield3
from really_important_table
where contact = 'x'; drop table members --'

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 79

SQL injection attacks

• Solution:
–Use regular expressions to check for input

–If input doesn't match suitable pattern, then
reject it (i.e., error)

• For example:
–queries should not contains quotation marks
–nor should they contain references to NULL
–etc. etc.

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 80

http://xkcd.com/327/

80

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 81

Summary
• Regular expressions enable us to perform many sophisticated

searches
– Can specify repeated sets of characters
– Can specify positions of matches

• Not only can searches be performed, but results of those searches
can be retrieved
– Using match objects; using compiled patterns
– Can even use the result of matches within a later part of the match!

• String substitutions are also possible with regexes
– Many problems normally requiring lots of "splits" and breaking of

strings into substrings can be performed with the aid of regular
expressions.

• Python's support for regexes in the re module is very good…
– … although you must remember to check how another language

deals with certain corner cases (i.e., using forward slashes in patterns;
the way escaped chars are handled with the language's strings; how
you access matches; etc.)

– always remember to quote patterns correctly (use r"<pattern>" when
in doubt)

University of Victoria
Department of Computer Science

SENG 265: Software Development Methods
Regular Expressions: Slide 82

Colophon

• Some examples taken from
"Programming Python, 3rd Edition" 2006
© Mark Lutz, O'Reilly

• Others taken from "Mastering Regular
Expressions, 3rd edition", 2006 © Jeffrey
E.F. Friedl, O'Reilly

• Everything else: © 2019 Michael Zastre,
University of Victoria

